Some people eat, sleep and chew gum, I do genealogy and write...

Sunday, June 16, 2019

The History of the Development of Genealogical DNA: Part Ten: The Advance of DNA Testing


Popular TV shows about crime scene investigation techniques, including DNA tests, pushed DNA into the public view. The first such show was named "Pilot" and aired on October 6, 2000, as the season premiere of CSI: Crime Scene Investigation. In 2003 NCIS began its 16 season run and added to the public awareness of DNA testing.

Quoting from Wikipedia: Genealogical DNA test,
The first company to provide direct-to-consumer genetic DNA testing was the now defunct GeneTree. However, it did not offer multi-generational genealogy tests. In fall 2001, GeneTree sold its assets to Salt Lake City-based Sorenson Molecular Genealogy Foundation (SMGF) which originated in 1999. While in operation, SMGF provided free Y-Chromosome and mitochondrial DNA tests to thousands. Later, GeneTree returned to genetic testing for genealogy in conjunction with the Sorenson parent company and eventually was part of the assets acquired in the Ancestry.com buyout of SMGF in 2012. 
In 2000, Family Tree DNA, founded by Bennett Greenspan and Max Blankfeld, was the first company dedicated to direct-to-consumer testing for genealogy research. They initially offered eleven marker Y-Chromosome STR tests and HVR1 mitochondrial DNA tests. They originally tested in partnership with the University of Arizona. 
In 2007, 23andMe was the first company to offer a saliva-based direct-to-consumer genetic testing. It was also the first to implement using autosomal DNA for ancestry testing, which all other major companies now use.
It is not a coincidence that consumer genealogical DNA testing closely parallels the popularization of DNA testing portrayed on nationally popular TV shows. It took some time following the publicity of the double helix beginning in 1953, the Nobel Prize given to Watson, Crick, and Wilkins in 1962, and the sequencing of the genome from 1990 to 2003 for DNA to move from an esoteric scientific study to the mainstream of our existence as humans. As you can see from the very short summary above, genealogists were and are at the forefront of those incorporating DNA test results into their interest in inheritance and the identity of individuals.

In order for a DNA test to be useful for genealogical research, it needs to be coupled with an extensive, existing family tree program. The only way to match individuals is when they take related DNA tests and there is some mechanism for those taking the test to see the connections. The question still remains as to the level of technical details the genealogist needs to know to make substantiated and supported genealogical conclusions. To push on towards a resolution of this question, I need to take a short step back and write further about the development of forensic DNA testing and what is called the "DNA fingerprint."

The first paternity testing relied on blood typing between the child and the alleged parent. See Wikipedia: DNA paternity testing. Here is a short summary of the history from the same article.
The first form of any kind of parental testing was blood typing, or matching blood types between the child and alleged parent, which became available in the 1920s, after scientists recognized that blood types, which had been discovered in the early 1900s, were genetically inherited. Under this form of testing, the blood types of the child and parents are compared, and it can be determined whether there is any possibility of a parental link. For example, two O blood type parents can only produce a child with an O blood type, and two parents with a B blood type can produce a child with either a B or O blood type. This most often led to inconclusive results, as only 30% of the entire population can be excluded from being the possible parent under this form of testing. In the 1930s, a new form of blood testing, serological testing, which tests certain proteins in the blood, became available, with a 40% exclusion rate. 
In the 1960s, highly accurate genetic paternity testing became a possibility when HLA typing was developed, which compares the genetic fingerprints on white blood cells between the child and alleged parent. HLA tests could be done with 80% accuracy, but could not distinguish between close relatives. Genetic parental testing technology advanced further with the isolation of the first restriction enzyme in 1970. Highly accurate DNA parental testing became available in the 1980s with the development of RFLP. In the 1990s, PCR, developed in 1983, became the standard method for DNA parental testing. A simpler, faster, and more accurate method of testing than RFLP, it has an exclusion rate of 99.99% or higher.
This summary type of history omits the real issue involved in paternity testing: whether or not the courts would accept the paternity tests, at whatever level, as evidence in a paternity lawsuit. Again referring to the Wikipedia article above,
The DNA parentage test that follows strict chain of custody can generate legally admissible results that are used for child support, inheritance, social welfare benefits, immigration, or adoption purposes. To satisfy the chain-of-custody legal requirements, all tested parties have to be properly identified and their specimens collected by a third-party professional who is not related to any of the tested parties and has no interest in the outcome of the test. 
The quantum of evidence needed is clear and convincing evidence; that is, more evidence than an ordinary case in civil litigation, but much less than beyond a reasonable doubt required to convict a defendant in a criminal case. 
In recent years, immigration authorities in various countries, such as United States, United Kingdom, Canada, Australia, France, and others may accept DNA parentage test results from immigration petitioners and beneficiaries in a family-based immigration case when primary documents, such as birth certificates, that prove biological relationship are missing or inadequate. 
The discovery of the blood groups by Karl Landsteiner in 1900 resulted in his being awarded the Nobel Prize in Physiology or Medicine in 1930. Here is a short explanation of the history from Wikipedia: Karl Landsteiner.
Karl Landsteiner, ForMemRS, (14 June 1868 – 26 June 1943) was an Austrian biologist, physician, and immunologist. He distinguished the main blood groups in 1900, having developed the modern system of classification of blood groups from his identification of the presence of agglutinins in the blood, and identified, with Alexander S. Wiener, the Rhesus factor, in 1937, thus enabling physicians to transfuse blood without endangering the patient's life. With Constantin Levaditi and Erwin Popper, he discovered the polio virus in 1909. He received the Aronson Prize in 1926. In 1930, he received the Nobel Prize in Physiology or Medicine. He was posthumously awarded the Lasker Award in 1946, and has been described as the father of transfusion medicine.
For a detailed analysis of the history of paternity testing see the following.

Hartshorne, Susan Vipont, Proof of  Paternity: The History, University of Manchester School of Law, 2912. https://www.research.manchester.ac.uk/portal/files/54532557/FULL_TEXT.PDF

Paternity lawsuits are seldom appealed and the evidentiary issues are similar to any type of evidence involving testimony by an expert witness.  In Arizona, for example, proof of paternity relies upon four presumptions. See Paternity Establishment by Presumption of Paternity quoting A.R.S. § 25-814.
In Arizona law, in general, a man is presumed to be the child’s father if:
  1. He was married to the mother during the 10 months immediately preceding the child’s birth. Or the child was born within 10 months after their marriage ended by death, annulment, divorce, or legal separation.
  2. Genetic testing affirms paternity by a 95% or more probability.
  3. They are unmarried and both sign the birth certificate.
  4. They are unmarried and both sign a voluntary acknowledgment of paternity.
Those presumptions are rebuttable with clear and convincing evidence, so they may be challenged. Additionally, if a court decree established another man’s paternity of the child, then the presumption of paternity is rebutted. A.R.S. § 25-814.
Genealogists, for the most part, ignore the technical, legal requirement for establishing a valid relationship and jump past all of the custodial and testing requirements and formulate their opinions based on the findings of unsubstantiated DNA tests that do not provide for verification.

Stay tuned for the next installment

See these previous posts:

Part One: https://genealogysstar.blogspot.com/2019/04/the-history-of-development-of.html
Part Two: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of.html
Part Three: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_5.html
Part Four: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_7.html
Part Five: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_10.html
Part Six:  https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_14.html
Part Seven: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_19.html
Part Eight: https://genealogysstar.blogspot.com/2019/06/the-history-of-development-of.html
Part Nine: https://genealogysstar.blogspot.com/2019/06/the-history-of-development-of_11.html

Friday, June 14, 2019

The Ultimate Digital Preservation Guide, Part Three -- The Dawn of the Digital Image Age


Some of the first consumer-level digital cameras were the Casio QV-10 and the Apple QuickTake 100 and 150.

Casio QV-10 had a resolution of 320 x 240 (no Megapixels) compared to a currently available Canon EOS 5DS R with a 50.6 Megapixel sensor. The Casio QB-10 cost $750.00.
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1712006

Apple QuickTake 100 launched in 1994 with a .31 Megapixel sensor and could store only eight photos at a time.
By Picto - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19217552
Apple QuickTake 200

By The original uploader was Redjar at English Wikipedia. - Photograph taken by Jared C. Benedict on 06 March 2004., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5945954
Here is a link to some of the photos taken by these original digital cameras: https://imgur.com/a/5zYQ2

The very first portable digital camera sold was probably the Dycam Model 1 sold beginning in 1990. Digital cameras, such as those in smartphones, have become ubiquitous. On average, on Facebook alone approximately 350 million photos are uploaded every day.

Digitization involves making an image of a document or object with a digital camera. A digital camera is an electronic device that records and stores digital images. Here is a YouTube video that shows how a digital camera captures anHow a Digital Camera Works image.


How a Digital Camera Works

An image sensor is a solid-state device or the part of the camera that reacts to light and converts the light that enters the camera through the lens into an image.


The Science of Camera Sensors

So one step in digital preservation is the process of making a digital image of the document or physical item you wish to preserve. The digital image is then stored for use. But digital preservation goes well beyond the first step and includes steps before and after an image is captured.

Whether you organize digital images by organizing the documents before the images are made or organize the digital images after they are made depends on how you decide to proceed. In either case, you should rely on the computer to do the organizing. Let the computer do what it does best and you do the rest. Here is a video that will help you understand this principle.


What's in that Pile? Organization for the Disorganized Genealogist

Stay tuned for the next installment.

See the previous posts in this series here:

Part One: https://genealogysstar.blogspot.com/2019/06/the-ultimate-digital-preservation-guide.html
Part Two: https://genealogysstar.blogspot.com/2019/06/the-ultimate-digital-preservation-guide_10.html

Wednesday, June 12, 2019

Incremental Help for Non-Profit Charitable Organization: The Family History Guide Association


If you are making any purchases through Amazon, you can provide a small benefit to a charity without any pain or even an impact on the prices you pay for your Amazon purchases. As you can see from the notice I received above, if you simply make your purchases through smile.amazon.com, Amazon donates a small percentage of your purchase to the charity of your choice. In this case, I am suggesting a donation to The Family History Guide Association, the 501 (c) 3 charitable corporation that supports The Family History Guide.

https://thefhguide.com/association.html
Of course, you can donate directly to The Family History Guide Association, but by adding it to your Amazon account through smile.amazon.com, you won't have to worry about writing out a check or whatever. If you don't know about The Family History Guide, I suggest looking at the website and watching a few videos on their YouTube Channel and on my YouTube Channel. Here are some helpful links.

https://www.youtube.com/channel/UCSdEueFFI669fDBwILOCDvw
https://thefhguide.com/
https://www.youtube.com/channel/UC4cT2_EjTMVVJgaF5Gdwl1Q?view_as=subscriber
https://youtu.be/EW4U4Wa7OJo
https://youtu.be/6eqLGy_JUhk

Tuesday, June 11, 2019

The History of the Development of Genealogical DNA: Part Nine: Without Leaving a Fingerprint

The development of using fingerprints for criminal investigations set the stage for the use of DNA in the courtroom and most recently the use of DNA in genealogical research. The concept was that fingerprints were individually unique but that fact had to be established in court before fingerprints were generally accepted for identification purposes in or out of a criminal investigation. The use of fingerprints in criminal investigations had a rocky start and it was several years before fingerprint evidence was generally accepted by courts around the world. The first case in the United States is explained in an article posted on Smithsonianmag.com entitled, "The First Criminal Trial That Used Fingerprints as Evidence." There has been a trend in the courts moving fingerprint evidence from producing a prima facia case to being used more to corroborate other evidence.

The case of Colin Pitchfork the first person to be convicted in a criminal case by DNA evidence is summarized in Wikipedia: Colin Pitchfork.
Colin Pitchfork (born 23 March 1960) is a British convicted murderer and rapist. He was the first person convicted of murder based on DNA fingerprinting evidence, and the first to be caught as a result of mass DNA screening. Pitchfork raped and murdered two girls in Leicestershire, the first in Narborough, in November 1983, and the second in Enderby, in July 1986. He was arrested on 19 September 1987 and sentenced to life imprisonment on 22 January 1988, after admitting both murders.
To move from the scientific circles into the courtroom and then be accepted by the public were all necessary steps to DNA's acceptance as a tool for genealogical research. The techniques for using DNA in criminal cases became known as "DNA fingerprinting." The definition of DNA fingerprinting is as follows:
DNA fingerprinting is a method used to identify an individual from a sample of DNA by looking at unique patterns in their DNA.
A major step in understanding DNA was the Human Genome Project. Here is a description of the Project from Wikipedia: Human Genome Project
The Human Genome Project (HGP) was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint. It remains the world's largest collaborative biological project. After the idea was picked up in 1984 by the US government when the planning started, the project formally launched in 1990 and was declared complete on April 14, 2003. Funding came from the US government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centers in the United States, the United Kingdom, Japan, France, Germany and China. 
The Human Genome Project originally aimed to map the nucleotides contained in a human haploid reference genome (more than three billion). The "genome" of any given individual is unique; mapping the "human genome" involved sequencing a small number of individuals and then assembling these together to get a complete sequence for each chromosome. Therefore, the finished human genome is a mosaic, not representing any one individual.
Genome variations are differences in the sequence of DNA from one person to another. Quoting from a Genome News Network (GenomeNewsNetwork.org) article entitled, "Genome Variations:"
The more closely related two people are, the more similar their genomes. Scientists estimate that the genomes of non-related people—any two people plucked at random off the street—differ at about 1 in every 1,200 to 1,500 DNA bases, or "letters." Whether that's a little or a lot of variation depends on your perspective. There are more than three million differences between your genome and anyone else's. On the other hand, we are all 99.9 percent the same, DNA-wise. (By contrast, we are only about 99 percent the same as our closest relatives, chimpanzees.) 
Most genome variations are relatively small and simple, involving only a few bases—an A substituted for a T here, a G left out there, a short sequence such as CT added somewhere else, for example. Your genome probably doesn't contain long stretches of DNA that someone else's lacks. 
If the genome were a book, every person's book would contain the same paragraphs and chapters, arranged in the same order. Each book would tell more or less the same story. But my book might contain a typo on page 303 that yours lacks, and your book might use a British spelling on page 135—"colour"—where mine uses the American spelling—"color."
It is these minute differences that are the basis for using DNA to identify criminals, help in genealogical research and assist in the diagnosis of some inherited diseases. The differences between individuals come for mutations or mistakes that occur in the DNA sequence with cell division. Determining the relationship of two humans is accomplished by matching the patterns of DNA variations.

Once again, I need to return to the question of the degree of genetic detail genealogists need to know to use the results of a DNA test to determine family relationships? The use of familial DNA relationships in criminal investigations is very similar to using similar information to determine the degree of relationship between any two individuals. It is my opinion that all of the concerns raised in the use of DNA evidence in a criminal trial should become considerations for evaluation and use of genealogical DNA tests.

Essentially, when we are doing an analysis of DNA variations, we are looking for similarities and differences in patterns. Over the years, the examination process has become more accurate and detailed. At the same time, the genealogically oriented websites that have DNA testing have developed sophisticated DNA data matching programs that provide suggested matches as well as tools for determining relationships. I am sort of back to my original car analogy, how much do you need to know about electric motors and internal combustion engines to drive a car? The same question applies, in its own way, to the use of DNA tests for genealogical research.

Going back to the legal system, the use of DNA evidence in criminal trials has had a rocky history that parallels the use of fingerprints. The stages of acceptance have progressed from initial doubts about their usefulness to almost exclusive use for prosecution and then to backing off from reliance and putting the DNA or fingerprint evidence into the same category as any other evidence raised in the course of a criminal trial. These changes are reflected in the current instructions given to jurors who serve in a criminal court trial. The role of jury instructions in a criminal trial is not something that you can learn from the media representations of criminal investigations and trials. But in real life jury trials for major crimes, the drafting and selection of jury instructions are a major component of the entire criminal justice process. Additionally, an examination of the jury instructions is illustrative of the way DNA test results should be viewed by careful genealogical researchers. The American Bar Association has a lengthy document entitled, "Standards on DNA Evidence." The important steps include the acquisition of the sample with proper permission from the person providing the sample, preservation of the integrity of the sample, maintenance of the chain of custody, tested by an accredited testing laboratory, and interpreted by qualified personnel.

You should be able to see that very few of these steps are followed when collecting with a genealogically oriented kit. There are no procedures which guarantee that the DNA sample sent to the DNA company actually came from the person purchasing the kit and sending in the sample. Of course, the consequences of a mixup or bad sample are not serious except in the case of the use of the test results for a "familial" DNA connection in conjunction with a criminal investigation.

This all for now, but stay tuned for an expansion on the interrelationship of DNA testing in both the genealogical and criminal prosecution areas.

See these previous posts:

Part One: https://genealogysstar.blogspot.com/2019/04/the-history-of-development-of.html
Part Two: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of.html
Part Three: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_5.html
Part Four: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_7.html
Part Five: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_10.html
Part Six:  https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_14.html
Part Seven: https://genealogysstar.blogspot.com/2019/05/the-history-of-development-of_19.html
Part Eight: https://genealogysstar.blogspot.com/2019/06/the-history-of-development-of.html

Monday, June 10, 2019

The Ultimate Digital Preservation Guide, Part Two -- The Cost of Physical Storage


What does it cost to preserve a historical, genealogically significant document? Let's compare the cost of preserving physical documents versus digital documents. Exact costs for storing and handling are dependent on the number of documents, the document's original condition, the location of the documents, and many other factors. Here is a quote from the U.S. National Archives in a short article entitled, "Storage and Handling."
Storage is the first and best means of defense in safely preserving archival holdings. Choices made in storage type and methodology have the greatest influence on the long-term preservation of records. 
A primary preservation goal is to house all records appropriately based on their size, format, and composition. Housing enclosures provide physical support and protection as well as a buffer against adverse or fluctuating environmental conditions. Housings also provide a mechanism for organizing and maintaining records in intellectual units that can be easily and safely handled. Factors that are considered when designing housings include the optimum method of accessing, storing, and using the records; stability of all component housing materials; method of fabrication or assembly; and cost.
One example of the cost of such storage is the cost of archival storage boxes. Uline.com is a major supplier of such boxes and other containers. The per unit price of archival boxes depends on quantity ordered but they can cost from $16.70 each for five down to $14.75 each for 50 or more purchased at one time. Archival quality "clamshell" cases such as the ones in the photo below can cost around $10 each with price reductions for quantities.


The cost of physical storage depends on your personal attitudes and preferences. It is not uncommon for genealogical collections to be trashed by the heirs of an active genealogist due to simple lack of interest and negligence. Even if the documents are carefully stored, the space that the documents occupy impinges on the living space in any dwelling unit and many people object to the clutter and would rather see the documents thrown away than spend anything on preservation or storage space.

If you have ever wondered why so many old historical records have been lost or destroyed, you should carefully consider this publication from the U.S. National Archives.

Archives II, National Archives at College Park: Using Technology to Safeguard Archival Records
NARA Technical Information Paper Number 13 (1997)

This 32-page document explains the major considerations of document storage. In the United States, preservation standards are set by the U.S. Department of Commerce, National Institute of Standards and Technology or NIST. Unfortunately, like many U.S. government websites, the NIST website is huge and difficult to navigate. I suggest using Google searches for specific information including NIST in the search.

Due to the cost of preserving physical, paper documents or even those made of other substances, various methods of preserving the information contained on the documents have been developed. Since about 1938, one common method of preservation has been to use microfilm. However, this method is far outside the ability or consideration of a single, private genealogist. For an idea of the storage and maintenance requirements for preservation of microfilm see the following article.

McCamy, C.S., and C.I. Pope. “Current Research on Preservation of Archival Records on Silver-Gelatin Type Microfilm in Roll Form.” Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 69A, no. 5 (September 1965): 385. https://doi.org/10.6028/jres.069A.040.

Although over the years, some genealogists purchased both microfilm rolls and the equipment to view the images, nearly all researchers who depended on microfilmed records traveled to a major repository such as the National Archives or the Family History Library in Salt Lake City, Utah to view microfilm. The cost of acquiring, cataloging, storing, and making microfilm available to researchers is symbolized by The Granite Mountain Records Vault, a complex of tunnels drilled into the side of Little Cottonwood Canyon just outside of Sandy, Utah, a suburb of Salt Lake City. This temperature and humidity controlled vault archives over 2.4 million rolls of microfilm containing billions of records.

Most original paper-based records exist in either a single copy or a few copies. Books and serial publications (magazines, newspapers, journals, etc.) may have multiple copies into the millions, but all of these historical documents suffer from the same issues of acquisition, cataloging, storing, and finally being available for researchers. In the United States, we have vast libraries such as the Library of Congress in Washington, D.C. but a visit to a large library will impress on the researcher the difficulty of maintaining and accessing such huge collections of paper-based documents. Once again, it is almost always necessary for the research to travel to the larger libraries for research opportunities.

The time and effort expended by a researcher are often ignored as a cost of doing research but it is a real and very significant component. Here is a quote from Wikipedia: Digital Camera that tells about the turning point for digitally recording and disseminating records.
The history of the digital camera began with Eugene F. Lally of the Jet Propulsion Laboratory, who was thinking about how to use a mosaic photosensor to capture digital images. His 1960s idea was to take pictures of the planets and stars while travelling through space to give information about the astronauts' position. As with Texas Instruments employee Willis Adcock's film-less camera (US patent 4,057,830) in 1972, the technology had yet to catch up with the concept. 
The Cromemco Cyclops was an all-digital camera introduced as a commercial product in 1975. Its design was published as a hobbyist construction project in the February 1975 issue of Popular Electronics magazine, and it used a 32×32 Metal Oxide Semiconductor sensor. 
Steven Sasson, an engineer at Eastman Kodak, invented and built the first self-contained electronic camera that used a charge-coupled device image sensor in 1975. Early uses were mainly military and scientific; followed by medical and news applications.
 With the next installment, we move into the digital age.

See the first post in this series here:

Part One: https://genealogysstar.blogspot.com/2019/06/the-ultimate-digital-preservation-guide.html

Saturday, June 8, 2019

Countdown to MyHeritage LIVE in Amsterdam, Netherlands

https://live2019.myheritage.com/
MyHeritage LIVE Amsterdam is the 2nd MyHeritage LIVE Conference for users. We are now in the middle of the planning for the Conference and you can still get Early Bird ticket prices until 31 July 2019. Here is a screenshot of the speakers.


I have been asked to present twice. My wife and I are excited to be able to attend the Conference. This will be our second trip to Europe although we have traveled in the Americas and lived in Central America.

Click Here to Register


Wednesday, June 5, 2019

The Ultimate Digital Preservation Guide, Part One


Genealogists tend to accumulate stuff. Some of this stuff has historical significance. Preserving the historically important part of all this stuff is a major part of our joint cultural heritage. We preserve all this historical stuff in museums, libraries, archives, and similar repositories. Despite the best efforts of preservationists, this physical stuff can decay, be destroyed, or lost in many different ways. Some of the stuff that is lost cannot be replaced and as a result, our historical and cultural heritage is incomplete. As genealogical researchers, we inevitably reach the point in our investigations when the loss of historically significant documents impedes or stops our research.

Presently, there are about 7.7 billion people on earth. Of course, these numbers change every second.

https://www.worldometers.info/world-population/
From this graphic, you can see that about 25 million people die every year. Some of those people will be related to you in some way. Genealogical research is never done, but due to the loss or absence of historically valuable records, most of those people who die every year will disappear from those records that manage to be preserved.

The cumulative cost of preserving a physical record is considerable and increases over time. There is, of course among genealogists, in particular, a lot of hand wringing over the loss of records. But some loss is inevitable and inexorable. Due to technological advances, we can now capture a much greater portion of our collective human history. Because of the technology that allows documents and records to be digitally preserved, the cost of preserving an individual record has plummeted and now approaches zero. But however contradictory as it may seem, the cost of preserving large numbers of records is still substantial and as with physical stuff, the now converted digital stuff will decay, be destroyed, or lost in many different ways.

Any recommendations as to the venue or format of digitization with the object of preservation will suffer the same or similar limitations as those that time and natural physical processes impose on physical records. In order to partially overcome these physical limitations, we need to broaden our perspective of preservation from specific time-sensitive methodology and begin to look at the concept of information preservation. Although we do attach significance to physical objects, as genealogists, we deal primarily in information rather than the form or substance of the method used to record that information.

It is time for some hypothetical examples to begin to delineate the concepts that need to be adopted to ultimately preserve what is important about our historical, genealogical heritage. Let's start by assuming we have a family Bible that contains genealogically important information, a historical resource commonly referred to and used as a genealogically significant form of a family record. This hypothetical family Bible is obviously a physical object that occupies a particular point in our space/time. No matter how this Bible is "preserved" it has a temporal life expectancy. At some point, the paper, leather, and other substances with which it is made will deteriorate. The loss of the Bible will be significant but only historically significant if the information contained in the Bible about the family is also lost.

This example presupposes that we view this particular Bible not only as a physical, historical artifact but also as a "container" or repository of specific family history information. In this sense, we separate the preservation of the historical information contained in the family Bible from the physical object itself. If we preserve the information contained in the family Bible in some fashion by copying it, we preserve the history even if the physical object is lost or destroyed.

The idea that "information" is something that exists separate and distinct from the physical object that containerizes the information is a relatively new concept. The origin of this concept is usually attributed to the mathematician, Claude E. Shannon with the publication of "A Mathematical Theory of Communication" as an article in the Bell System Technical Journal in 1948. It was renamed The Mathematical Theory of Communication in the book of the same name. See Wikipedia: A Mathematical Theory of Communication. Information is the abstract idea of what is exchanged through communication. When a physical object, such as the family Bible in the example above, is lost or destroyed, obviously some or all of the information about that object or that could be derived from that object is lost. But because we now have more efficient digital methods of preserving some of that information, we can more easily and efficiently stem the impact of the loss of the physical object.

In this series, I will focus on the entire process of digital preservation, from the selection of the information to be preserved to the challenge of maintaining the existence. Of necessity, some of the content of this series will involve technical terms and concepts but if you are serious about preserving genealogical significant information, I hope you will benefit from this exploration of the subject.